Classification of the Irreducible Representations of the Affine Hecke algebra of Type B2 with Unequal Parameters
نویسنده
چکیده
The representation theory of the affine Hecke algebras has two different approaches. One is a geometric approach and the other is a combinatorial one. In the equal parameter case, affine Hecke algebras are constructed using equivariant K-groups, and their irreducible representations are constructed on Borel-Moore homologies. By this method, their irreducible representations are parameterized by the index triples ([CG],[KL]). On the other hand, G. Lusztig classified the irreducible representations in the unequal parameter case. His ideas are to use equivariant cohomologies and graded Hecke algebras ([Lus89],[LusI],[LusII],[LusIII]). Although the geometric approach will give us a powerful method for the classification, but it does not tell us the detailed structure of irreducible representations. Thus it is important to construct them explicitly in combinatorial approach. Using semi-normal representations and the generalized Young tableaux, A. Ram constructed calibrated irreducible representations with equal parameters ([Ram1]). Furthermore C. Kriloff and A. Ram constructed irreducible calibrated representations of graded Hecke algebras ([KR]). However, we cannot always construct irreducible representations by combinatorial manner. A. Ram classified irreducible representations of affine Hecke algebras of type A1, A2, B2, G2 in equal parameter case ([Ram2]). But there are some mistakes in his list of irreducible representations and his construction of induced representation of type B2. In this paper, we will correct his list about type B2 and also classify the irreducible representations in the unequal parameter case. There are three one-parameter families of calibrated irreducible representations and some other irreducible representations. Acknowledgement. I would like to thank Professor M. Kashiwara and Professor S. Ariki for their advices and suggestions, and Mathematica for its power of calculation.
منابع مشابه
Reducibility of Induced Discrete Series Representations for Affine Hecke Algebras of Type B
Recently Delorme and Opdam have generalized the theory of Rgroups towards affine Hecke algebras with unequal labels. We apply their results in the case where the affine Hecke algebra is of type B, for an induced discrete series representation with real central character. We calculate the R-group of such an induced representation, and show that it decomposes multiplicity free into 2 irreducible ...
متن کاملCalibrated representations of affine Hecke algebras
This paper introduces the notion of calibrated representations for affine Hecke algebras and classifies and constructs all finite dimensional irreducible calibrated representations. The main results are that (1) irreducible calibrated representations are indexed by placed skew shapes, (2) the dimension of an irreducible calibrated representation is the number of standard Young tableaux correspo...
متن کاملON UNITARY UNIPOTENT REPRESENTATIONS OF p-ADIC GROUPS AND AFFINE HECKE ALGEBRAS WITH UNEQUAL PARAMETERS
We determine the unitary dual of the geometric graded Hecke algebras with unequal parameters which appear in Lusztig’s classification of unipotent representations for exceptional p-adic groups. The largest such algebra is of type F4. Via the Barbasch-Moy correspondence of unitarity applied to this setting, this is equivalent to the identification of the corresponding unitary unipotent represent...
متن کاملRepresentations of Graded Hecke Algebras
Representations of affine and graded Hecke algebras associated to Weyl groups play an important role in the Langlands correspondence for the admissible representations of a reductive p-adic group. We work in the general setting of a graded Hecke algebra associated to any real reflection group with arbitrary parameters. In this setting we provide a classification of all irreducible representatio...
متن کاملCrystals and Affine Hecke Algebras of Type D
The Lascoux-Leclerc-Thibon-Ariki theory asserts that the K-group of the representations of the affine Hecke algebras of type A is isomorphic to the algebra of functions on the maximal unipotent subgroup of the group associated with a Lie algebra g where g is gl ∞ or the affine Lie algebra A (1) l , and the irreducible representations correspond to the upper global bases. Recently, N. Enomoto an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005